SOLUTION OF GRINBERG AND CHEKMAREVA'S FIRST INTEGRAL EQUATION USING AN ASYMPTOTIC SERIES IN A SMALL PARAMETER THAT IS PRESENT

L. E. Rikenglaz

A method is suggested for constructing the terms in an asymptotic series in a small parameter μ when seeking the position of the phase front $y(\tau)$ in the Stefan boundary-value problem of the first kind for a semi-infinite medium that is at the phase transition temperature at the initial moment.

1. The nonlinear integral equations obtained in [1] for determining the position of the phase front $\xi(t)$ in Stefan's problem for a semi-infinite body $x \ge 0$ that is at the temperature of the phase transition T(x, 0) = 0 at the time t = 0 will be referred to as Grinberg and Chermareva's first, second, and third integral equations, respectively, for boundary conditions of the first, second, and third kind at x = 0.

We use t_0 , $x_0 = at_0^2$, T_0 to denote the characteristic time, coordinate, and temperature (*a* is the thermal diffusivity of the medium) and we introduce the dimensionless time $\tau = t/t_0$, the phase front coordinate $y(\tau) = \xi(t)/x_0$, and the temperature of the boundary $u_0(\tau) = T(0, \tau)/T_0$. In terms of these variables it is convenient to write Grinberg and Chekmareva's first integral equation, bearing in mind further transformations in the form

$$\int_{0}^{\infty} \exp(-p\tau) \left[\operatorname{ch} \left[p^{1/2} y(\tau) \right] - 1 \right] d\tau = 2\mu^{2} \hat{u}_{0}(p) .$$
(1)

Here $\hat{u}_0(p)$ is the Laplace transform of $u_0(\tau)$, and $\mu = (cT_0/2L)^{1/2}$ is a dimensionless parameter. The volumetric specific heat and the latent heat of melting will be denoted by c and L.

It is unlikely that nonlinear integral equation (1) has an exact solution for an arbitrary function $\hat{u}_0(p)$. However, when the condition $\mu \ll 1$ is satisfied, a solution of Eq.(1) can be found in the general case in the form of an asymptotic series in μ . It should be noted that in some cases it is possible to sum this series and thereby find an exact solution.

The condition $\mu \ll 1$ is equivalent to satisfaction of the condition of smallness of the volumetric energy $-cT_0$ of heating from the initial temperature to the maximum temperature T_0 relative to the volumetric latent heat of melting L.

2. To save space, we will use the notation $s = p^{1/2}$, $y \equiv y(\tau, \mu)$, $F \equiv F(\tau, s, \mu) = ch(sy) - 1$, and we seek the functions y and F as power series in μ , assuming that differentiation with respect to μ and integration with the weight factor $exp(-p\tau)$ with respect to τ are valid for these series:

$$y = \sum_{k=1}^{\infty} \frac{\mu^{k}}{k!} y_{k}, \quad F = \sum_{k=2}^{\infty} \frac{\mu^{k}}{k!} F_{k}, \quad y_{k} \equiv y(\tau, s), \quad F_{k} \equiv F_{k}(\tau, s).$$
(2)

In writting these series, we took into account that $y(\tau, 0) \equiv F(\tau, s, 0) \equiv F^{(1)}(\tau, s, 0) \equiv 0$. Here and in the following the expression $v^{(k)}$ means the k-th derivative of the function v with respect to μ .

It is evident that

St. Petersburg Mining Institute. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 66, No. 2, pp. 235-237, February, 1994. Original article submitted April 14, 1992.

UDC 53:51

$$y_k = y^{(k)}(\tau, 0), \quad F_k = F^{(k)}(\tau, s, 0).$$
 (3)

3. It will be shown how $y_k(\tau)$ can be found successively for k = 1, 2, To do this, the second of the series in formula (2) will be substituted in Eq. (1), and terms with equal powers of μ will be equated. This leads to an infinite system of integral equations for determination of $y_k(\tau)$:

$$\int_{0}^{\infty} \exp(-p\tau) F_{2}(\tau, s) d\tau = 4 \hat{u}_{0}(p),$$
(4)

$$\int_{0}^{\infty} \exp(-p\tau) F_{k}(\tau, s) d\tau = 0, \quad k = 3, 4, \dots$$
(5)

Now F_k will be expressed in terms of y_k . It is obvious that for $k \ge 1$ $F^{(k)}$ can be written as

$$F^{(k)} = f_k \operatorname{ch}(sy) + \psi_k \operatorname{sh}(sy), \quad f_k \equiv f_k(\tau, s, \mu),$$

$$\psi_k \equiv \psi_k(\tau, s, \mu), \quad f_1 \equiv 0, \quad \psi_1 = sy.$$
 (6)

Therefore,

$$F_{k} = F^{(k)}(\tau, s, 0) = f_{k}(\tau, s, 0).$$
⁽⁷⁾

To determine f_k from recurrence formulas, expression (6) will be differentiated with respect to μ :

$$F^{(k+1)} = [f_k^{(1)} + sy^{(1)} \psi_k] \operatorname{ch} (sy) + [\psi_k^{(1)} + sy^{(1)} f_k] \operatorname{sh} (sy) =$$
$$= f_{k+1} \operatorname{ch} (sy) + \psi_{k+1} \operatorname{sh} (sy) ,$$

whence it follows that

$$f_{k+1} = f_k^{(1)} + sy^{(1)} \psi_k, \quad \psi_{k+1} = \psi_k^{(1)} + sy^{(1)} f_k.$$
(8)

From formulas (7) and (8) F_{2} , F_{3} , etc. can be easily found in succession.

The expressions for the three first values of F_k will be given, omitting simple calculations:

$$F_2 = py_1^2(\tau), \quad F_3 = 3py_1(\tau) y_2(\tau), \quad F_4 = p^2 y_1^4(\tau) + 4y_1(\tau) y_3(\tau).$$
(9)

Substitution of F_k from formula (9) into integral equations (4) and (5) yields

$$\int_{0}^{\infty} \exp(-p\tau) y_{1}^{2}(\tau) d\tau = \frac{4\hat{u}_{0}(p)}{p}, \qquad (10)$$

$$\int_{0}^{\infty} \exp(-p\tau) y_{1}(\tau) y_{2}(\tau) d\tau = 0, \qquad (11)$$

$$\int_{0}^{\infty} \exp(-p\tau) \left[p y_{1}^{4}(\tau) \neq 4 y_{1}(\tau) y_{3}(\tau) \right] d\tau = 0, \qquad (12)$$

whence it is readily determined in succession that

$$y_{1}(\tau) = 2 \left[\int_{0}^{\tau} u_{0}(\tau) d\tau \right]^{1/2}, \quad y_{2}(\tau) \equiv 0, \quad y_{3}(\tau) = -\frac{1}{3} \frac{d}{d\tau} \left[y_{1}(\tau) \right]^{3}.$$
(13)

Substitution of y_k from formula (13) into series (2) for $y(\tau)$ gives with accuracy to terms of fourth order in μ

$$y(\tau) = \mu \left[y_1(\tau) - \frac{1}{6} \mu^2 y_1^2(\tau) y_1(\tau) \right] + O(\mu^4).$$
⁽¹⁴⁾

4. To investigate the character of convergence of the series of $y(\tau)$ in μ , we will consider the well-known example of the exact solution of Stefan's problem for $u_0(\tau) \equiv 1$, which in the present notation has the form

$$y(\tau) = 2\beta \sqrt{\tau} , \qquad (15)$$

where β is the root of the transcendental equation

$$\beta \exp \beta^2 \int_0^\beta \exp(-z^2) dz - \mu^2 = 0$$

The derivative of the left-hand side with respect to β for $\beta = \mu = 0$ equals zero. Therefore β is not an analytical function of μ . However, for $\mu \ll 1$, it is possible to obtain an asymptotic expansion of β in μ . With accuracy to terms of order $O(\mu^4)$, we have

$$\beta = \mu - \frac{\mu^3}{3} + O(\mu^4)$$
,

whence, using formula (12), we obtain

$$y(\tau) = 2\mu \left(1 - \frac{\mu^2}{3}\right)\sqrt{\tau} + O(\mu^4).$$
⁽¹⁶⁾

On the other hand, it follows from formulas (13) that $y_1(\tau) = 2\tau^{1/2}$, $y_2(\tau) \equiv 0$, and $y_3(\tau) = -4\tau^{1/2}$. Substituting the values of y_1 , y_2 , y_3 into series (2) for $y(\tau)$, we obtain with accuracy to terms of order $O(\mu^4)$:

$$y(\tau) = 2\mu \left(1 - \frac{1}{3}\mu^2\right)\sqrt{\tau} + O(\mu^4).$$
⁽¹⁷⁾

The agreement between formulas (16) and (17) proves that the expansion of $y(\tau)$ in μ is an asymptotic series.

In conclusion, it should be noted that the method suggested for solution of nonlinear equation (1) in the case of the small parameter μ can easily be extended to the case where $\hat{u}_0(p)$ depends on μ in such a way that the function $\hat{u}_0(p)$ could be expanded in an analytical or asymptotical series in μ .

REFERENCES

1. G. A. Grinberg and O. M. Chekmareva, Zh. Tekh. Fiz., 40, No. 10, 2028-2031 (1970).